论文标题

将小组限制在一致的右角Artin组上

Limit groups over coherent right-angled Artin groups

论文作者

Casals-Ruiz, Montserrat, Duncan, Andrew, Kazachkov, Ilya

论文摘要

定义了一个新的组$ \ MATHCAL {C} $,包含所有相干RAAG和所有相对双曲线组。结果表明,对于类$ \ mathcal {c} $中的组$ g $,$ \ mathbb {z} [t] $ - 指数组$ g^{\ mathbb {z} [t] [t]} $可能被构造为迭代的centraliseser扩展。利用这个事实,证明$ g^{\ mathbb {z} [t]} $是完全残留的$ g $(即它具有与$ g $相同的通用理论),因此其有限生成的子组是$ g $的限制组。如果$ \ mathbb {g} $是一个连贯的raag,则匡威也可以 - $ \ mathbb {g} $嵌入到$ \ mathbb {g}^{\ mathbb {Z} [z} [t]} $上的任何极限组。此外,事实证明,限制组超过$ \ mathbb {g} $是有限呈现,连贯和cat $(0)$的,因此特别是有可解决的单词和共轭问题。

A new class of groups $\mathcal{C}$, containing all coherent RAAGs and all toral relatively hyperbolic groups, is defined. It is shown that, for a group $G$ in the class $\mathcal{C}$, the $\mathbb{Z}[t]$-exponential group $G^{\mathbb{Z}[t]}$ may be constructed as an iterated centraliser extension. Using this fact, it is proved that $G^{\mathbb{Z}[t]}$ is fully residually $G$ (i.e. it has the same universal theory as $G$) and so its finitely generated subgroups are limit groups over $G$. If $\mathbb{G}$ is a coherent RAAG, then the converse also holds - any limit group over $\mathbb{G}$ embeds into $\mathbb{G}^{\mathbb{Z}[t]}$. Moreover, it is proved that limit groups over $\mathbb{G}$ are finitely presented, coherent and CAT$(0)$, so in particular have solvable word and conjugacy problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源