论文标题

两亲性双层的歧管:稳定到边界

Manifolds of Amphiphilic Bilayers: Stability up to the Boundary

论文作者

Chen, Yuan, Promislow, Keith

论文摘要

我们考虑了功能化的Cahn Hilliard梯度流的强尺度的质量保留$ l^2 $级别流量,并建立了由准平衡双层组成的歧管的非线性稳定性,直到歧管的边界。在薄但非零的界面宽度的极限中,$ \ varepsilon \ ll1,$ biyer歧管是通过描述界面进化和“控制界面附近轮廓结构的界面进化和“珍珠”模式的曲折模式来参数化的。珍珠模式弱阻尼,可能导致界面的动态破裂。两亲界接口可以延长以减少能量。我们引入了界面形状的隐式定义的参数化,该参数从描述形状的参数中解脱出来,并将非线性投影引入周围邻域的流形上。双层歧管具有渐近但有限的尺寸,以最大程度地提高正常的胁迫,同时保留了曲折和珍珠模式之间的波数差距。 Modulo是珍珠稳定性的假设,我们表明,只要界面形状保持足够光滑且远离自我交流,该歧管就会吸引附近的轨道进入管状邻域。在同伴论文中,Arxiv:1907.02196,我们确定了开放的初始数据集,其轨道在显着的瞬态后会收敛到圆形平衡,并得出了由曲线构成的奇异性界面进化,该运动由反对曲率的运动组成,该曲率由非脑化的弱弱术语正常化。

We consider the mass preserving $L^2$-gradient flow of the strong scaling of the functionalized Cahn Hilliard gradient flow and establish the nonlinear stability of a manifold comprised of quasi-equilibrium bilayer \muckmucks up to the manifold's boundary. In the limit of thin but non-zero interfacial width, $\varepsilon\ll1,$ the bilayer manifold is parameterized by meandering modes that describe the interfacial evolution and "pearling" modes that control the structure of the profile near the interface. The pearling modes are weakly damped and can lead to the dynamic rupture of the interface. Amphiphilic interfaces can lengthen to decrease energy. We introduce an implicitly defined parameterization of the interfacial shape that uncouples this growth from the parameters describing the shape and introduce a nonlinear projection onto the manifold from a surrounding neighborhood. The bilayer manifold has asymptotically large but finite dimension tuned to maximize normal coercivity while preserving the wave-number gap between the meandering and the pearling modes. Modulo a pearling stability assumption, we show that the manifold attracts nearby orbits into a tubular neighborhood about itself so long as the interfacial shape remains sufficiently smooth and far from self-intersection. In a companion paper, arXiv:1907.02196, we identify open sets of initial data whose orbits converge to circular equilibrium after a significant transient, and derive a singularly perturbed interfacial evolution comprised of motion against curvature regularized by an asymptotically weak Willmore term.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源