论文标题

基于物理的阴影重建用于固有图像分解

Physics-based Shading Reconstruction for Intrinsic Image Decomposition

论文作者

Baslamisli, Anil S., Liu, Yang, Karaoglu, Sezer, Gevers, Theo

论文摘要

我们研究了光度法不变性和深度学习来计算固有图像(反照率和阴影)。我们提出了反照率和阴影梯度描述符,这些描述符来自基于物理的模型。使用描述符,将反照率转变掩盖,并以无学习的无监督方式直接从相应的RGB图像梯度中计算出初始稀疏阴影图。然后,提出了一种优化方法来重建完整的密集阴影图。最后,我们将生成的阴影图整合到一个新颖的深度学习框架中,以完善它,并预测相应的反照率图像以实现固有的图像分解。通过这样做,我们是第一个直接解决阴影估计的质地和强度歧义问题的人。大规模实验表明,我们的方法是由基于物理的不变描述符引导的,在MIT内在,NIR-RGB内部,多弹力固有图像,光谱固有图像,尽可能逼真的结果以及野外数据集中的固有图像的竞争成果上,取得了较高的结果。

We investigate the use of photometric invariance and deep learning to compute intrinsic images (albedo and shading). We propose albedo and shading gradient descriptors which are derived from physics-based models. Using the descriptors, albedo transitions are masked out and an initial sparse shading map is calculated directly from the corresponding RGB image gradients in a learning-free unsupervised manner. Then, an optimization method is proposed to reconstruct the full dense shading map. Finally, we integrate the generated shading map into a novel deep learning framework to refine it and also to predict corresponding albedo image to achieve intrinsic image decomposition. By doing so, we are the first to directly address the texture and intensity ambiguity problems of the shading estimations. Large scale experiments show that our approach steered by physics-based invariant descriptors achieve superior results on MIT Intrinsics, NIR-RGB Intrinsics, Multi-Illuminant Intrinsic Images, Spectral Intrinsic Images, As Realistic As Possible, and competitive results on Intrinsic Images in the Wild datasets while achieving state-of-the-art shading estimations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源