论文标题

智能反映表面辅助的多用户通信的渠道估计的深层剩余学习

Deep Residual Learning for Channel Estimation in Intelligent Reflecting Surface-Assisted Multi-User Communications

论文作者

Liu, Chang, Liu, Xuemeng, Ng, Derrick Wing Kwan, Yuan, Jinhong

论文摘要

渠道估计是实现实用智能反映表面辅助多用户通信(IRS-MC)系统的主要任务之一。但是,与传统通信系统不同,IRS-MC系统通常涉及具有复杂统计分布的级联渠道。在这种情况下,最佳的最小均方根误差(MMSE)估计器需要计算多维集成,该集成在实践中非常棘手。为了进一步提高渠道估计性能,在本文中,我们将通道估计的模型模型为一个降级问题,并采用深层剩余学习(DREL)方法隐式学习从基于嘈杂的飞行员的观测值中恢复渠道系数的残留噪声。为此,我们首先开发了一个基于DREL的通道估计框架,其中深度残留网络(DRN)基于贝叶斯哲学的估计量是基于贝叶斯哲学的。随后提出了卷积神经网络(CNN)DRN(CDRN)的实现,以进行IRS-MC系统中的渠道估计,在该系统中,CNN Denoising块配备了元素减法结构,专门设计用于利用这两种噪声频道矩阵的空间特征和添加性的噪声效果,并具有噪音的噪音。特别地,根据贝叶斯估计得出并分析了所提出的CDRN的明确表达,以理论上表征其特性。最后,仿真结果表明,所提出的方法的性能方法方法是最佳MMSE估计器的性能,需要通道的先验概率密度函数。

Channel estimation is one of the main tasks in realizing practical intelligent reflecting surface-assisted multi-user communication (IRS-MC) systems. However, different from traditional communication systems, an IRS-MC system generally involves a cascaded channel with a sophisticated statistical distribution. In this case, the optimal minimum mean square error (MMSE) estimator requires the calculation of a multidimensional integration which is intractable to be implemented in practice. To further improve the channel estimation performance, in this paper, we model the channel estimation as a denoising problem and adopt a deep residual learning (DReL) approach to implicitly learn the residual noise for recovering the channel coefficients from the noisy pilot-based observations. To this end, we first develop a versatile DReL-based channel estimation framework where a deep residual network (DRN)-based MMSE estimator is derived in terms of Bayesian philosophy. As a realization of the developed DReL framework, a convolutional neural network (CNN)-based DRN (CDRN) is then proposed for channel estimation in IRS-MC systems, in which a CNN denoising block equipped with an element-wise subtraction structure is specifically designed to exploit both the spatial features of the noisy channel matrices and the additive nature of the noise simultaneously. In particular, an explicit expression of the proposed CDRN is derived and analyzed in terms of Bayesian estimation to characterize its properties theoretically. Finally, simulation results demonstrate that the performance of the proposed method approaches that of the optimal MMSE estimator requiring the availability of the prior probability density function of channel.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源