论文标题
了解可区分的神经体系结构搜索中的接线演变
Understanding the wiring evolution in differentiable neural architecture search
论文作者
论文摘要
关于可区分的神经体系结构搜索方法是否有效地发现接线拓扑的争议存在争议。为了了解接线拓扑的发展方式,我们研究了几个现有可区分的NAS框架的基本机制。我们的调查是由三个观察到的可微分NAS的搜索模式的动机:1)他们通过成长而不是修剪而搜索; 2)更广泛的网络比更深的网络更喜欢; 3)在双层优化中未选择边缘。为了解剖这些现象,我们提出了关于搜索现有框架算法的统一观点,将全局优化转移到本地成本最小化。基于这种重新制定,我们进行了经验和理论分析,揭示了成本分配机制和导致观察到现象的成本分配机制和进化动力学中的隐式感应偏见。这些偏见表明对某些拓扑结构有很大的歧视。为此,我们提出了一些问题,即未来的神经接线发现的可区分方法需要面对,希望唤起讨论并重新思考在现有的NAS方法中隐含地强制执行多少偏见。
Controversy exists on whether differentiable neural architecture search methods discover wiring topology effectively. To understand how wiring topology evolves, we study the underlying mechanism of several existing differentiable NAS frameworks. Our investigation is motivated by three observed searching patterns of differentiable NAS: 1) they search by growing instead of pruning; 2) wider networks are more preferred than deeper ones; 3) no edges are selected in bi-level optimization. To anatomize these phenomena, we propose a unified view on searching algorithms of existing frameworks, transferring the global optimization to local cost minimization. Based on this reformulation, we conduct empirical and theoretical analyses, revealing implicit inductive biases in the cost's assignment mechanism and evolution dynamics that cause the observed phenomena. These biases indicate strong discrimination towards certain topologies. To this end, we pose questions that future differentiable methods for neural wiring discovery need to confront, hoping to evoke a discussion and rethinking on how much bias has been enforced implicitly in existing NAS methods.