论文标题

Local-HDP:在实时机器人方案中的交互式开放式3D对象分类

Local-HDP: Interactive Open-Ended 3D Object Categorization in Real-Time Robotic Scenarios

论文作者

Ayoobi, H., Kasaei, H., Cao, M., Verbrugge, R., Verheij, B.

论文摘要

我们介绍了一种非参数层次贝叶斯方法,用于开放式3D对象分类,称为局部层次结构dirichlet过程(local-HDP)。此方法使代理可以逐步学习每个类别的独立主题,并及时适应环境。等级贝叶斯方法(例如潜在的Dirichlet分配(LDA))可以将低级特征转换为3D对象分类的高级概念主题。但是,基于LDA的方法的效率和准确性取决于手动选择的主题数量。此外,修复所有类别的主题数量可能会导致模型的过度拟合或不足。相比之下,提出的局部HDP可以自主确定每个类别的主题数量。此外,在本地HDP模型中,已对在线变异推理方法进行了调整以快速后近似。实验表明,所提出的局部HDP方法在准确性,可伸缩性和记忆效率方面优于其他最先进的方法。此外,已经进行了两个机器人实验,以显示拟议方法在实时应用中的适用性。

We introduce a non-parametric hierarchical Bayesian approach for open-ended 3D object categorization, named the Local Hierarchical Dirichlet Process (Local-HDP). This method allows an agent to learn independent topics for each category incrementally and to adapt to the environment in time. Hierarchical Bayesian approaches like Latent Dirichlet Allocation (LDA) can transform low-level features to high-level conceptual topics for 3D object categorization. However, the efficiency and accuracy of LDA-based approaches depend on the number of topics that is chosen manually. Moreover, fixing the number of topics for all categories can lead to overfitting or underfitting of the model. In contrast, the proposed Local-HDP can autonomously determine the number of topics for each category. Furthermore, the online variational inference method has been adapted for fast posterior approximation in the Local-HDP model. Experiments show that the proposed Local-HDP method outperforms other state-of-the-art approaches in terms of accuracy, scalability, and memory efficiency by a large margin. Moreover, two robotic experiments have been conducted to show the applicability of the proposed approach in real-time applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源