论文标题

诱导,吸收和弱的 * - 代表 * - 代数捆绑

Induction, absorption and weak containment of *-representations of Banach *-algebraic bundles

论文作者

Ferraro, Damián

论文摘要

给定一个倒束$ \ nathcal {b} = \ {b_t \} _ {t \ in G} $上的lch组和一个封闭的子组$ h \ subset g,$,我们表明所有 * - 占$ \ \ \ \ \ \ \ \ \ natcal {b} b} _h:h: * - $ \ Mathcal {b} $的代表通过Fell的归纳过程;我们将其描述为通过a*-homorphism $ q^{\ Mathcal {b}} _ H \ colon C^*(\ Mathcal {B})\ to \ Mathbb {B}(x___ { $ c^*_ h(\ Mathcal {b}):= q^{\ Mathcal {b}} _ H(c^*(\ Mathcal {b}))$中间为$ c^*(\ Mathcal {b}) $ c^*_ {r}(\ Mathcal {b})= C^*_ {\ {e \}}(\ Mathcal {b})$,因为每个包含子组$ h \ subset k \ subset g $ subset g $ subset g $ subset g $给​​出了独特的映射$ q^{ c^*_ k(\ Mathcal {b})\ to C^*_ H(\ Mathcal {B})$,以至于$ q^{\ Mathcal {b}} _ {在$ \ Mathcal {b},$ $ g,\ h $和$ k $(例如饱和,核能或弱遏制)上查找条件,暗示$ q^{\ Mathcal {b}} _ {hk} _ {hk} $是忠实的。我们的主要工具之一是FLEL的吸收原理(用于饱和束)的混合物,以及exel和ng的结果,用于减少横截面C* - 代数。我们还表明,鉴于$ g/h上的$ \ mathcal {b} $ for $ g/h,$ g/h,如果$ h $开放或在$ g中具有开放率的净量表,则$ t $ then $ t $弱属于$ \ mathcal not $ \ b} $(Iff,如果是$ g的,饱和)。给定$ g的正常和闭合子组,$ $ h \ subset k,$我们在$ g/k $上构建了一个fell束$ \ nathcal {c} $,以至于$ c^*_ r(\ nathcal {c})= c^*_ h(\ mathcal {b})。如果两个$ q^{\ mathcal {c}} _ {\ {e \}} $和$ q^{\ MATHCAL {b} _K} _H $是。

Given a Fell bundle $\mathcal{B}=\{B_t\}_{t\in G}$ over a LCH group and a closed subgroup $H\subset G,$ we show that all the *-representations of $\mathcal{B}_H:=\{B_t\}_{t\in H}$ can be induced to *-representations of $\mathcal{B}$ by means of Fell's induction process; which we describe as induction via a *-homomorphism $q^{\mathcal{B}}_H\colon C^*(\mathcal{B})\to \mathbb{B}(X_{C^*(\mathcal{B}_H)}).$ The quotients $C^*_H(\mathcal{B}):=q^{\mathcal{B}}_H(C^*(\mathcal{B}))$ are intermediate to $C^*(\mathcal{B})= C^*_G(\mathcal{B})$ and $C^*_{r}(\mathcal{B})=C^*_{\{e\}}(\mathcal{B})$ because every inclusion of subgroups $H\subset K\subset G$ gives a unique quotient map $q^{\mathcal{B}}_{HK}\colon C^*_K(\mathcal{B})\to C^*_H(\mathcal{B})$ such that $q^{\mathcal{B}}_{HK}\circ q^{\mathcal{B}}_K=q^{\mathcal{B}}_H.$ All along the article we try to find conditions on $\mathcal{B},$ $G,\ H$ and $K$ (e.g. saturation, nuclearity or weak containment) that imply $q^{\mathcal{B}}_{HK}$ is faithful. One of our main tools is a blend of Fell's absorption principle (for saturated bundles) and a result of Exel and Ng for reduced cross sectional C*-algebras. We also show that given an imprimitivity system $\langle T,P\rangle$ for $\mathcal{B}$ over $G/H,$ if $H$ is open or has open normalizer in $G,$ then $T$ is weakly contained in a *-representation induced from $\mathcal{B}_H$ (even if $\mathcal{B}$ is not saturated). Given normal and closed subgroups of $G,$ $H\subset K,$ we construct a Fell bundle $\mathcal{C}$ over $G/K$ such that $C^*_r(\mathcal{C})=C^*_H(\mathcal{B}).$ We show that $q^{\mathcal{B}}_H$ is faithful if and only if both $q^{\mathcal{C}}_{\{e\}}$ and $q^{\mathcal{B}_K}_H$ are.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源