论文标题

具有恒定系数的高阶schrödinger类型方程的适合性和抛物线平滑效果

Well-posedness and parabolic smoothing effect for higher order Schrödinger type equations with constant coefficients

论文作者

Tanaka, Tomoyuki, Tsugawa, Kotaro

论文摘要

我们考虑了具有恒定系数的一类高阶Schrödinger类型方程的库奇问题。通过采用能量不平等,我们显示了$ l^2 $适当的性,抛物线疗法平滑和规律性持久性的细分。我们根据其平滑属性将此等方程式分为三种类型。

We consider the Cauchy problem of a class of higher order Schrödinger type equations with constant coefficients. By employing the energy inequality, we show the $L^2$ well-posedness, the parabolic smoothing and a breakdown of the persistence of regularity. We classify this class of equations into three types on the basis of their smoothing property.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源