论文标题

飞镖 - :坚固地退出性能崩溃,没有指标

DARTS-: Robustly Stepping out of Performance Collapse Without Indicators

论文作者

Chu, Xiangxiang, Wang, Xiaoxing, Zhang, Bo, Lu, Shun, Wei, Xiaolin, Yan, Junchi

论文摘要

尽管可区分架构搜索(飞镖)的快速开发,但长期以来的性能不稳定,这极大地限制了其应用。现有的鲁棒方法从最终的恶化行为中获取线索,而不是发现其导致因子。提出了各种指标,例如Hessian特征值,作为在性能崩溃之前停止搜索的信号。但是,如果设置阈值不适当,这些基于指标的方法往往很容易拒绝良好的体系结构,更不用说搜索本质上是嘈杂的。在本文中,我们采取了一种更微妙,更直接的方法来解决崩溃。我们首先证明,跳过连接比其他候选人行动具有明显的优势,在这种操作中,它可以轻松从不利的状态中恢复并成为统治。我们猜想这种特权正在导致退化性能。因此,我们建议通过辅助跳过连接来考虑这一收益,以确保所有操作的公平竞争。我们称这种方法飞镖。在各种数据集上进行的大量实验证明了它可以大大提高鲁棒性。我们的代码可从https://github.com/meituan-automl/darts-获得。

Despite the fast development of differentiable architecture search (DARTS), it suffers from long-standing performance instability, which extremely limits its application. Existing robustifying methods draw clues from the resulting deteriorated behavior instead of finding out its causing factor. Various indicators such as Hessian eigenvalues are proposed as a signal to stop searching before the performance collapses. However, these indicator-based methods tend to easily reject good architectures if the thresholds are inappropriately set, let alone the searching is intrinsically noisy. In this paper, we undertake a more subtle and direct approach to resolve the collapse. We first demonstrate that skip connections have a clear advantage over other candidate operations, where it can easily recover from a disadvantageous state and become dominant. We conjecture that this privilege is causing degenerated performance. Therefore, we propose to factor out this benefit with an auxiliary skip connection, ensuring a fairer competition for all operations. We call this approach DARTS-. Extensive experiments on various datasets verify that it can substantially improve robustness. Our code is available at https://github.com/Meituan-AutoML/DARTS- .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源