论文标题

标量 - 平台指标在低维歧管上具有脐带边界的紧凑性结果

A compactness result for scalar-flat metrics on low dimensional manifolds with umbilic boundary

论文作者

Ghimenti, Marco G., Micheletti, Anna Maria

论文摘要

令(m,g)带有脐带边界的紧凑型riemannian $ n $ dimensional歧管。众所周知,在某些假设下,在G的共形类别中,有标量 - 平台指标将M作为恒定平均曲率超表面的边界。在本文中,我们证明这些指标是在低维歧管的情况下,即n = 6,7,8,只要Weyl Tensor总是在边界上消失,即n = 6,7,8。

Let (M,g) a compact Riemannian $n$-dimensional manifold with umbilic boundary. It is well know that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set in the case of low dimensional manifolds, that is n=6,7,8, provided that the Weyl tensor is always not vanishing on the boundary.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源