论文标题

T牛里星的磁扭矩:积聚与非刻板系统

Magnetic torques on T Tauri stars: accreting vs. non-accreting systems

论文作者

Pantolmos, G., Zanni, C., Bouvier, J.

论文摘要

经典的T托里恒星(CTTS)与周围的磁盘磁相互作用,该过程被认为可以调节其旋转进化。在这项工作中,我们计算出作用于由不同的积聚(积聚漏斗)和弹出(恒星风和磁层弹出)流动组件产生的CTT表面上的扭矩。此外,我们比较了两个不同系统中因恒星风而引起的磁制动:隔离和积聚的恒星。 2.5D磁水动力学,时间依赖性,轴对称模拟。对于这两个系统,恒星风都是热驱动的。在Star-Disk Interaction(SDI)模拟中,积聚磁盘是开普勒,粘性和电阻性的。提出了两个系列模拟,每个系统一个。我们发现,在经典的T托里系统中,磁层弹出的存在限制了恒星的扩张,从而导致流出的沙漏形几何形状。另外,增生柱的形成修饰了恒星风中利用的开放磁通量的量。这些影响对恒星风能具有很大的影响,我们表明,与孤立的系统相比,恒星风的制动在星形相互作用系统中更有效。我们还为SDI系统中的每个流量分量在巨大的磁场强度上得出扭矩尺度,该系统直接在恒星表面上施加了扭矩。在所有执行的SDI模拟中,恒星风的提取物不到质量吸积率的2%,并且磁盘被截断了高达66%的旋转半径。所有模拟都显示净旋转扭矩。为了达到恒星自旋平衡,我们需要更巨大的恒星风或磁盘被截断更接近旋转半径,从而提高了磁层弹出的扭矩效率。

Classical T Tauri stars (CTTs) magnetically interact with their surrounding disks, a process that is thought to regulate their rotational evolution. In this work, we compute torques acting onto the stellar surface of CTTs arising from different accreting (accretion funnels) and ejecting (stellar winds and magnetospheric ejections) flow components. Furthermore, we compare the magnetic braking due to stellar winds in two different systems: isolated and accreting stars. 2.5D magnetohydrodynamic, time-dependent, axisymmetric simulations are employed. For both systems the stellar wind is thermally driven. In the star-disk-interaction (SDI) simulations the accretion disk is Keplerian, viscous, and resistive. Two series of simulations are presented, one for each system. We find that in classical T Tauri systems the presence of magnetospheric ejections confines the stellar-wind expansion, resulting in an hourglass-shaped geometry of the outflow. In addition, the formation of the accretion columns modifies the amount of open magnetic flux exploited by the stellar wind. These effects have a strong impact on the stellar wind properties and we show that the stellar-wind braking is more efficient in the star-disk-interacting systems than in the isolated ones. We also derive torque scalings, over a wide range of magnetic field strengths, for each flow component in a SDI system that directly applies a torque on the stellar surface. In all the performed SDI simulations the stellar wind extracts less than 2% of the mass accretion rate and the disk is truncated up to 66% of the corotation radius. All the simulations show a net spin-up torque. In order to achieve a stellar-spin equilibrium we need either more massive stellar winds or disks being truncated closer to the corotation radius, which increases the torque efficiency by the magnetospheric ejections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源