论文标题

与不确定$ ϕ $ -laplacian类型方程相关的边界价值问题的积极解决方案的唯一性

Uniqueness of positive solutions for boundary value problems associated with indefinite $ϕ$-Laplacian type equations

论文作者

Boscaggin, Alberto, Feltrin, Guglielmo, Zanolin, Fabio

论文摘要

本文为诺伊曼的积极解决方案和与$ ϕ $ -DAPLACIAN方程相关的周期性边界价值问题提供了独特性结果$ a(t)$是逐步无限的重量,$ g(u)$是连续的功能。在处理$ p $ -laplacian差异操作员$ ϕ(s)= | s | |^{p-2} s $带有$ p> 1 $,以及nonlinear term $ g(u)= u^γ$ at \ mathbb {r} $,我们证明存在一个独特的积极解决方案,我们证明$γ\ in \ mathopen {]} - \ infty,(1-2p)/(p-1)\ mathclose {]} \ cup \ mathopen {]} p-1} p-1,++\ infty \ mathclose {[} $。

The paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the $ϕ$-Laplacian equation \begin{equation*} \bigl{(} ϕ(u') \bigr{)}' + a(t) g(u) = 0, \end{equation*} where $ϕ$ is a homeomorphism with $ϕ(0)=0$, $a(t)$ is a stepwise indefinite weight and $g(u)$ is a continuous function. When dealing with the $p$-Laplacian differential operator $ϕ(s)=|s|^{p-2}s$ with $p>1$, and the nonlinear term $g(u)=u^γ$ with $γ\in\mathbb{R}$, we prove the existence of a unique positive solution when $γ\in\mathopen{]}-\infty,(1-2p)/(p-1)\mathclose{]} \cup \mathopen{]}p-1,+\infty\mathclose{[}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源