论文标题
春季:模糊基基网络图案的采矿RNA结构
VeRNAl: Mining RNA Structures for Fuzzy Base Pairing Network Motifs
论文作者
论文摘要
RNA 3D基序是复发子结构,以基本对相互作用的网络建模,这对于理解结构 - 功能关系至关重要。自动识别此类基序的任务在计算上很难,并且在RNA结构生物学和网络分析领域仍然是一个关键挑战。最新方法的状态通过约束基序的结构可变性并缩小了子结构搜索空间来解决主题问题的特殊情况。在这里,我们通过提出图案查找问题作为图表表示和聚类任务来放松这些约束。该框架利用图表的连续性质,以有效的方式对RNA图案的灵活性和可变性进行建模。我们提出了一组节点相似性函数,聚类方法和基序构造算法,以恢复柔性RNA基序。我们的工具,用户可以轻松地将春季定制为所需的主题灵活性,丰度和大小的级别。我们表明,Vernal能够检索和扩展已知类别的图案,并提出新的主题。
RNA 3D motifs are recurrent substructures, modelled as networks of base pair interactions, which are crucial for understanding structure-function relationships. The task of automatically identifying such motifs is computationally hard, and remains a key challenge in the field of RNA structural biology and network analysis. State of the art methods solve special cases of the motif problem by constraining the structural variability in occurrences of a motif, and narrowing the substructure search space. Here, we relax these constraints by posing the motif finding problem as a graph representation learning and clustering task. This framing takes advantage of the continuous nature of graph representations to model the flexibility and variability of RNA motifs in an efficient manner. We propose a set of node similarity functions, clustering methods, and motif construction algorithms to recover flexible RNA motifs. Our tool, VeRNAl can be easily customized by users to desired levels of motif flexibility, abundance and size. We show that VeRNAl is able to retrieve and expand known classes of motifs, as well as to propose novel motifs.