论文标题
扭曲和不断发展的暗物质光环的模型
Models of Distorted and Evolving Dark Matter Halos
论文作者
论文摘要
我们研究了从宇宙缩放模拟中提取的银河系状暗物质光环的演变的基础功能扩展的能力。对于每个快照,将光环的密度降低为基础函数扩展,插值用于重新创建快照之间的演变。晕光密度的角变化是通过球形谐波描述的,而径向变化是由生物三角态函数适应用于处理截短的光环或用键链的。使用具有相似计算费用的任何一种方法可以实现高保真轨道的重建。我们量化了重建轨道中的误差如何随扩展顺序和快照间距而变化。尽管有许多可能的生物三角扩展,但很难以中等数量的术语($ \ gtrsim15 $ radial和$ \ gtrsim6 $ angular)击败传统的赫尔奎斯特式运动器扩展。作为开发机械的两种应用,我们评估了电势对(i)银河系卫星轨道的时间依赖性的影响,以及(ii)在银河系和其他附近星系中观察到的卫星平面。过去5个GYR中的时间演变以银河系卫星的轨道参数为$ \ sim 15 $ 15 $ 15 $,与观察性错误或当今银河系潜力中的不确定性相当。平均而言,卫星的平面在不断发展和时间无关的电位上以相似的速度生长。如果平面变得较小或与不断发展的光环的主要或次要轴对齐,则平面厚度的生长可能会更多,或更少。
We investigate the ability of basis function expansions to reproduce the evolution of a Milky Way-like dark matter halo, extracted from a cosmological zoom-in simulation. For each snapshot, the density of the halo is reduced to a basis function expansion, with interpolation used to recreate the evolution between snapshots. The angular variation of the halo density is described by spherical harmonics, and the radial variation either by biorthonormal basis functions adapted to handle truncated haloes or by splines. High fidelity orbit reconstructions are attainable using either method with similar computational expense. We quantify how the error in the reconstructed orbits varies with expansion order and snapshot spacing. Despite the many possible biorthonormal expansions, it is hard to beat a conventional Hernquist-Ostriker expansion with a moderate number of terms ($\gtrsim15$ radial and $\gtrsim6$ angular). As two applications of the developed machinery, we assess the impact of the time-dependence of the potential on (i) the orbits of Milky Way satellites, and (ii) planes of satellites as observed in the Milky Way and other nearby galaxies. Time evolution over the last 5 Gyr introduces an uncertainty in the Milky Way satellites' orbital parameters of $\sim 15$ per cent, comparable to that induced by the observational errors or the uncertainty in the present-day Milky Way potential. On average, planes of satellites grow at similar rates in evolving and time-independent potentials. There can be more, or less, growth in the plane's thickness, if the plane becomes less, or more, aligned with the major or minor axis of the evolving halo.