论文标题

各向异性净空间的插值定理

Interpolation theorem for anisotropic net spaces

论文作者

Bashirova, A. N., Kalidolday, A. H., Nursultanov, E. D.

论文摘要

该论文研究各向异性网的插值属性$ n _ {\ bar {p},\ bar {q}}}}(m)$,其中$ \ bar {p_1,p_1,p_1,p_1,p_1,p_2)$,$ \ bar {q} =(q_1,q_1,q_2)$。结果表明,以下平等相对于多维插值方法$$(n _ {\ bar {p} _0,\ bar {q} _0}(m), n _ {\ bar {p} _1,\ bar {q} _1}(m))_ {\barθ,\ bar {q}} = n _ {\ bar {p},\ bar {q}}}}}}}}}}(m),\; \; \; \; \ frac {1} {\ bar {p}} = \ frac {1- \barθ} {\ bar {p} _0}+\ frac {\barθ} {\ bar {p {p} _1}。 $$

The paper studies the interpolation properties of anisotropic net spaces $N_{\bar{p},\bar{q}}(M)$, where $\bar{p}=(p_1, p_2)$, $\bar{q}=(q_1, q_2)$. It is shown that the following equality holds with respect to the multidimensional interpolation method $$ (N_{\bar{p}_0,\bar{q}_0}(M), N_{\bar{p}_1,\bar{q}_1}(M))_{\barθ,\bar{q}}=N_{\bar{p},\bar{q}}(M),\;\;\; \frac{1}{\bar{p}}=\frac{1-\barθ}{\bar{p}_0}+\frac{\barθ}{\bar{p}_1}. $$

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源