论文标题
使用基于代理的建模找到合作游戏的核心成员
Finding Core Members of Cooperative Games using Agent-Based Modeling
论文作者
论文摘要
基于代理的建模(ABM)是一个有力的范式,可以深入了解社会现象。 ABM很少应用的一个领域是联盟组成。传统上,联盟形成是使用合作游戏理论建模的。在本文中,开发了一种可以嵌入ABM中的启发式算法,以允许代理商找到联盟。由此产生的联盟结构与合作游戏理论解决方案方法(特别是核心)相媲美。由于找到合作游戏理论解决方案的计算复杂性,因此需要一种启发式方法,该解决方案将其应用限制在大约成绩的代理上。 ABM范式提供了一个平台,在该平台中,代理之间的简单规则和交互可以产生宏观效果,而无需大量的计算要求。因此,这可能是近似大量代理商合作游戏解决方案的有效手段。我们的启发式算法结合了基于代理的建模和合作游戏理论,以帮助找到作为游戏核心解决方案成员的代理分区。我们的启发式算法的准确性可以通过将其结果与实际核心解决方案进行比较来确定。通过开发一个使用一个名为“手套游戏的合作游戏”的特定示例的实验来实现的比较。手套游戏是一种交换经济游戏。找到传统的合作游戏理论解决方案对于大量参与者来说是计算密集的,因为必须将每个可能的分区与每个可能的联盟进行比较以确定核心集合;因此,我们的实验只考虑了多达9名玩家的游戏。结果表明,我们的启发式方法在实验中考虑的游戏中实现了90%以上的核心解决方案。
Agent-based modeling (ABM) is a powerful paradigm to gain insight into social phenomena. One area that ABM has rarely been applied is coalition formation. Traditionally, coalition formation is modeled using cooperative game theory. In this paper, a heuristic algorithm is developed that can be embedded into an ABM to allow the agents to find coalition. The resultant coalition structures are comparable to those found by cooperative game theory solution approaches, specifically, the core. A heuristic approach is required due to the computational complexity of finding a cooperative game theory solution which limits its application to about only a score of agents. The ABM paradigm provides a platform in which simple rules and interactions between agents can produce a macro-level effect without the large computational requirements. As such, it can be an effective means for approximating cooperative game solutions for large numbers of agents. Our heuristic algorithm combines agent-based modeling and cooperative game theory to help find agent partitions that are members of a games' core solution. The accuracy of our heuristic algorithm can be determined by comparing its outcomes to the actual core solutions. This comparison achieved by developing an experiment that uses a specific example of a cooperative game called the glove game. The glove game is a type of exchange economy game. Finding the traditional cooperative game theory solutions is computationally intensive for large numbers of players because each possible partition must be compared to each possible coalition to determine the core set; hence our experiment only considers games of up to nine players. The results indicate that our heuristic approach achieves a core solution over 90% of the time for the games considered in our experiment.