论文标题
大型智能表面辅助物理层安全传输
Large Intelligent Surface Aided Physical Layer Security Transmission
论文作者
论文摘要
在本文中,我们研究了一个大型智能表面增强(LIS增强)系统,该系统部署了LIS以协助安全传输。我们的设计旨在最大化不同渠道模型中可实现的保密率,即,里奇亚人褪色以及(或(或)独立且相同分布的高斯褪色,用于合法和窃听的通道。此外,我们考虑了人造噪声辅助传输结构,以进一步改善系统性能。解决上述问题的困难是预期的保密率表达式的结构和非凸相移限制。为了促进设计,我们提出了两个框架,即基于样本的平均近似值(基于SAA)算法和混合随机预测的梯度构成策略(Hybrid SPG-CP)算法,以计算秘密率表达的预期项。同时,采用了多数化最小化(MM)来解决相位移位约束的非跨性别性。此外,我们通过充分利用期望条款进行了两种特殊情况的分析。仿真结果表明,所提出的算法有效地优化了所考虑的设置的保密通信率,与没有LIS的常规体系结构相比,LIS增强系统大大提高了保密性能。
In this paper, we investigate a large intelligent surface-enhanced (LIS-enhanced) system, where a LIS is deployed to assist secure transmission. Our design aims to maximize the achievable secrecy rates in different channel models, i.e., Rician fading and (or) independent and identically distributed Gaussian fading for the legitimate and eavesdropper channels. In addition, we take into consideration an artificial noise-aided transmission structure for further improving system performance. The difficulties of tackling the aforementioned problems are the structure of the expected secrecy rate expressions and the non-convex phase shift constraint. To facilitate the design, we propose two frameworks, namely the sample average approximation based (SAA-based) algorithm and the hybrid stochastic projected gradient-convergent policy (hybrid SPG-CP) algorithm, to calculate the expectation terms in the secrecy rate expressions. Meanwhile, majorization minimization (MM) is adopted to address the non-convexity of the phase shift constraint. In addition, we give some analyses on two special scenarios by making full use of the expectation terms. Simulation results show that the proposed algorithms effectively optimize the secrecy communication rate for the considered setup, and the LIS-enhanced system greatly improves secrecy performance compared to conventional architectures without LIS.