论文标题

关于用于分割性能评估的平均Hausdorff距离的使用:用于排名的隐藏偏见

On The Usage Of Average Hausdorff Distance For Segmentation Performance Assessment: Hidden Bias When Used For Ranking

论文作者

Aydin, Orhun Utku, Taha, Abdel Aziz, Hilbert, Adam, Khalil, Ahmed A., Galinovic, Ivana, Fiebach, Jochen B., Frey, Dietmar, Madai, Vince Istvan

论文摘要

Hausdorff平均距离(AVD)是一种广泛使用的性能度量,用于计算两个点集之间的距离。在医学图像细分中,AVD用于比较地面真相图像与分段结果允许其排名。但是,我们确定了AVD的排名偏差,使其不适合细分排名。为了减轻这种偏见,我们提出了我们创造了平衡AVD(BAVD)的AVD的修改计算。为了模拟排名的分割,我们手动创建了在脑血管分割中常见的非重叠分段错误作为我们的用例。我们将创建的错误连续和随机地添加到地面真理中,我们创建了一组模拟分割,并增加了错误数量。使用AVD和BAVD对每组模拟分段进行排名。我们计算了分段排名和每个模拟分割中的误差数之间的kendall级别相关性。 BAVD产生的排名的平均相关性明显高于AVD(0.847)的平均相关性(0.969)。在200个总排名中,Bavd误会了52,AVD误入了179个段。我们提出的评估措施BAVD减轻了AVD的排名偏见,使其更适合对细分的排名和质量评估。

Average Hausdorff Distance (AVD) is a widely used performance measure to calculate the distance between two point sets. In medical image segmentation, AVD is used to compare ground truth images with segmentation results allowing their ranking. We identified, however, a ranking bias of AVD making it less suitable for segmentation ranking. To mitigate this bias, we present a modified calculation of AVD that we have coined balanced AVD (bAVD). To simulate segmentations for ranking, we manually created non-overlapping segmentation errors common in cerebral vessel segmentation as our use-case. Adding the created errors consecutively and randomly to the ground truth, we created sets of simulated segmentations with increasing number of errors. Each set of simulated segmentations was ranked using AVD and bAVD. We calculated the Kendall-rank-correlation-coefficient between the segmentation ranking and the number of errors in each simulated segmentation. The rankings produced by bAVD had a significantly higher average correlation (0.969) than those of AVD (0.847). In 200 total rankings, bAVD misranked 52 and AVD misranked 179 segmentations. Our proposed evaluation measure, bAVD, alleviates AVDs ranking bias making it more suitable for rankings and quality assessment of segmentations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源