论文标题
关于HOPF表面纤维作为谐波图和最小表面的稳定性
On stability of the fibres of Hopf surfaces as harmonic maps and minimal surfaces
论文作者
论文摘要
我们在Hopf Surface $ \ Mathbb {s}^3 \ Times \ Mathbb {S}^1 $上构建一个遗传学指标的家庭,其基本类代表了AEPPLI共同体学组中不同的共同体学课程。这些指标在当地是合成的Kähler。在$π的复曲纤维中:谐波的表面也不稳定。
We construct a family of Hermitian metrics on the Hopf surface $ \mathbb{S}^3\times \mathbb{S}^1$, whose fundamental classes represent distinct cohomology classes in the Aeppli cohomology group. These metrics are locally conformally Kähler. Among the toric fibres of $π:\mathbb{S}^{3} \times \mathbb{S}^1\to\mathbb{C} P^1$ two of them are stable minimal surfaces and each of the two has a neighbourhood so that fibres therein are given by stable harmonic maps from 2-torus and outside, far away from the two tori, there are unstable harmonic ones that are also unstable minimal surfaces.