论文标题

关于HOPF表面纤维作为谐波图和最小表面的稳定性

On stability of the fibres of Hopf surfaces as harmonic maps and minimal surfaces

论文作者

Chen, Jingyi, Huang, Liding

论文摘要

我们在Hopf Surface $ \ Mathbb {s}^3 \ Times \ Mathbb {S}^1 $上构建一个遗传学指标的家庭,其基本类代表了AEPPLI共同体学组中不同的共同体学课程。这些指标在当地是合成的Kähler。在$π的复曲纤维中:谐波的表面也不稳定。

We construct a family of Hermitian metrics on the Hopf surface $ \mathbb{S}^3\times \mathbb{S}^1$, whose fundamental classes represent distinct cohomology classes in the Aeppli cohomology group. These metrics are locally conformally Kähler. Among the toric fibres of $π:\mathbb{S}^{3} \times \mathbb{S}^1\to\mathbb{C} P^1$ two of them are stable minimal surfaces and each of the two has a neighbourhood so that fibres therein are given by stable harmonic maps from 2-torus and outside, far away from the two tori, there are unstable harmonic ones that are also unstable minimal surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源