论文标题

量子图和单数高斯频道的划线类别

Divisibility classes of qubit maps and singular Gaussian channels

论文作者

Davalos, David

论文摘要

我们介绍了有关我的博士学位工作主要部分的两个项目。在第一个中,我们研究了量子通道,这是最通用的操作从其分裂性能的角度来看,这是将量子状态映射到量子状态的最通用的操作。我们引入了工具来测试是否可以通过Lindblad Master方程描述的过程来实现给定的量子通道。反过来,这定义了可以通过形成单参数半群的方式进行划分的渠道,从而引入了这项工作的最有限研究的可划分类型。利用我们的结果,以及对文献中可以找到的其他类型的分裂性的研究,我们表征了Qubit量子通道的空间。我们发现了连接纠缠渠道和无限分裂性的概念的有趣结果。此外,我们证明了无限分区的通道等效于通过单参数半群可以实现的渠道,为更通用的通道空间打开了这个问题。在第二个项目中,我们研究了位置表征中的单模高斯量子通道的功能形式,超出了高斯功能形式。我们使用完整的阳性和跟踪保留条件进行黑框表征,并报告存在两个没有功能性高斯形式的子集的存在。该研究特别限制了单数通道的情况,因此将我们的结果与基于规范形式的已知分类方案联系起来。通过展示如何在这些操作下转换高斯状态,并得出非单明性情况的主方程的条件,我们对没有高斯功能形式的高斯通道的完整表征可以完成。

We present two projects concerning the main part of my PhD work. In the first one we study quantum channels, which are the most general operations mapping quantum states into quantum states, from the point of view of their divisibility properties. We introduced tools to test if a given quantum channel can be implemented by a process described by a Lindblad master equation. This in turn defines channels that can be divided in such a way that they form a one-parameter semigroup, thus introducing the most restricted studied divisibility type of this work. Using our results, together with the study of other types of divisibility that can be found in the literature, we characterized the space of qubit quantum channels. We found interesting results connecting the concept of entanglement-breaking channel and infinitesimal divisibility. Additionally we proved that infinitely divisible channels are equivalent to the ones that are implementable by one-parameter semigroups, opening this question for more general channel spaces. In the second project we study the functional forms of one-mode Gaussian quantum channels in the position state representation, beyond Gaussian functional forms. We perform a black-box characterization using complete positivity and trace preserving conditions, and report the existence of two subsets that do not have a functional Gaussian form. The study covers as particular limit the case of singular channels, thus connecting our results with the known classification scheme based on canonical forms. Our full characterization of Gaussian channels without Gaussian functional form is completed by showing how Gaussian states are transformed under these operations, and by deriving the conditions for the existence of master equations for the non-singular cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源