论文标题
Morse功能和真实的Lagrangian Thimbles在隔离轨道上
Morse functions and Real Lagrangian Thimbles on Adjoint Orbits
论文作者
论文摘要
我们将Lagrangian Thimbles的潜力与Landau-Ginzburg模型的潜力与其真实部分的Morse理论进行了比较。我们探索了使用Lie理论定义的Landau-Ginzburg模型,明确地构建了它们的真实细顶针,并将其与真实梯度流的稳定且不稳定的流形进行了比较。
We compare Lagrangian thimbles for the potential of a Landau-Ginzburg model to the Morse theory of its real part. We explore Landau-Ginzburg models defined using Lie theory, constructing their real Lagrangian thimbles explicitly and comparing them to the stable and unstable manifolds of the real gradient flow.