论文标题

用于人脑血流监测的干涉式斑点可见度光谱(ISV)

Interferometric speckle visibility spectroscopy (ISVS) for human cerebral blood flow monitoring

论文作者

Xu, J., Jahromi, A. K., Brake, J., Robinson, J. E., Yang, C.

论文摘要

红外光散射方法已开发并采用非侵入性监测人类脑血流(CBF)。但是,当检测深组织中的血液流动时,与大脑相互作用的反射光子的数量很低。为了解决这个含有光子的问题,我们提出并演示了干涉斑点可见性光谱(ISV)的概念。在ISV中,使用干涉检测方案来增强弱信号光。血流动力学是根据单个框架斑点模式的斑点统计来推断的。我们通过实验表明,当信号光子数不足时引入干涉测量检测,通过引入干涉量检测来改善测量保真度。我们应用ISVS系统在光强度为$ \ sim $ 100倍的情况下,监视人类CBF,比常见的扩散相关光谱(DCS)实现的情况低100倍。由于用于捕获ISVS系统中光的像素数量大量($ \ sim 2 \ times 10^5 $),因此我们能够在一个曝光时间内收集与普通DCS实现相似的光子。我们的系统以100 Hz的采样速率运行。在2 ms的曝光时间,平均信号光子电子编号为$ \ sim $ 0.95计数/像素,产生单个像素干涉测量值信号 - 噪声比率(SNR)为$ \ sim $ 0.97。总$ \ sim 2 \ times 10^5 $像素提供了预期的总SNR为436。我们成功证明,ISVS系统能够监测人类脑脉动血流,以及当人类受试者正在执行呼吸持续任务时的血液流量变化。

Infrared light scattering methods have been developed and employed to non-invasively monitor human cerebral blood flow (CBF). However, the number of reflected photons that interact with the brain is low when detecting blood flow in deep tissue. To tackle this photon-starved problem, we present and demonstrate the idea of interferometric speckle visibility spectroscopy (ISVS). In ISVS, an interferometric detection scheme is used to boost the weak signal light. The blood flow dynamics are inferred from the speckle statistics of a single frame speckle pattern. We experimentally demonstrated the improvement of measurement fidelity by introducing interferometric detection when the signal photon number is insufficient. We apply the ISVS system to monitor the human CBF in situations where the light intensity is $\sim$100-fold less than that in common diffuse correlation spectroscopy (DCS) implementations. Due to the large number of pixels ($\sim 2\times 10^5$) used to capture light in the ISVS system, we are able to collect a similar number of photons within one exposure time as in normal DCS implementations. Our system operates at a sampling rate of 100 Hz. At the exposure time of 2 ms, the average signal photon electron number is $\sim$0.95 count/pixel, yielding a single pixel interferometric measurement signal-to-noise ratio (SNR) of $\sim$0.97. The total $\sim 2\times 10^5$ pixels provide an expected overall SNR of 436. We successfully demonstrate that the ISVS system is able to monitor the human brain pulsatile blood flow, as well as the blood flow change when a human subject is doing a breath holding task.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源