论文标题

集体启动布尔功能

Collectively canalizing Boolean functions

论文作者

Kadelka, Claus, Keilty, Benjamin, Laubenbacher, Reinhard

论文摘要

本文研究了集体启动布尔函数的数学特性,这是从系统生物学中的应用中引起的一类功能。布尔网络是一个越来越流行的监管网络建模框架,此处研究的功能类别捕获了生物网络动力学的关键特征,即在某些条件下,一个或多个变量的子集可以主导布尔函数的价值,以排除所有其他变量。这些功能具有丰富的数学属性。本文显示了此类集合的数量和类型如何影响函数的行为,并为任何布尔函数的载量强度定义了一种新措施。我们进一步将集体管道化的概念与布尔功能的平均灵敏度的良好概念联系起来。布尔函数与它们形成的网络的动态之间的关系在生物学以外的广泛应用中很重要,例如计算机科学,并且已经通过基于统计和基于仿真的方法进行了研究。但是结构和动态之间的丰富关系在很大程度上尚未开发,本文旨在为其数学基础做出贡献。

This paper studies the mathematical properties of collectively canalizing Boolean functions, a class of functions that has arisen from applications in systems biology. Boolean networks are an increasingly popular modeling framework for regulatory networks, and the class of functions studied here captures a key feature of biological network dynamics, namely that a subset of one or more variables, under certain conditions, can dominate the value of a Boolean function, to the exclusion of all others. These functions have rich mathematical properties to be explored. The paper shows how the number and type of such sets influence a function's behavior and define a new measure for the canalizing strength of any Boolean function. We further connect the concept of collective canalization with the well-studied concept of the average sensitivity of a Boolean function. The relationship between Boolean functions and the dynamics of the networks they form is important in a wide range of applications beyond biology, such as computer science, and has been studied with statistical and simulation-based methods. But the rich relationship between structure and dynamics remains largely unexplored, and this paper is intended as a contribution to its mathematical foundation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源