论文标题
交通流量极端的定向评估
Directional Assessment of Traffic Flow Extremes
论文作者
论文摘要
我们分析了一天中由交通计数组成的极端交通流量。数据本质上是曲线,并确定应将哪种轨迹分类为极端的轨迹并不直截了当。为了以连贯的方式评估交通流量曲线的极端,我们使用极端性的方向定义,并在不对称的规范中应用称为主成分分析(PCA)的维度减小技术。在经典的PCA中,一个人通过将数据围绕其平均值的最大变化的方向投影,从而降低了数据的尺寸。在PCA中,在不对称标准中,One选择了投影方向,从而使尾部指数周围的不对称加权变化(预期)可能是最大的数据。预期是尾巴度量,以类似的方式概括平均值,与分位数概括了中位数。着重于数据期望周围的不对称加权变化,我们发现了适当的投影方向和交通流量曲线的低维表示,这些曲线揭示了其极端情况下不同模式。使用来自德国柏林市中心的Ernst-Reuter-Platz上的回旋处的交通流数据,我们估计,可视化和解释由此产生的主要期望组件。交通流量轮廓的相应定向极端很容易识别并连接到其位置和时间相关的细节。它们的形状是由它们在每个主要期望组件上的分数驱动的,这对于提取和分析流量模式很有用。我们降低方向性流量方向极端的方法扩大了相关的方法论基础,并为随后的分析,预测和控制交通流量模式提供了令人鼓舞的结果。
We analyze extremes of traffic flow profiles composed of traffic counts over a day. The data is essentially curves and determining which trajectory should be classified as extreme is not straight forward. To assess the extremes of the traffic flow curves in a coherent way, we use a directional definition of extremeness and apply the dimension reduction technique called principal component analysis (PCA) in an asymmetric norm. In the classical PCA one reduces the dimensions of the data by projecting it in the direction of the largest variation of the projection around its mean. In the PCA in an asymmetric norm one chooses the projection directions, such that the asymmetrically weighted variation around a tail index -- an expectile -- of the data is the largest possible. Expectiles are tail measures that generalize the mean in a similar manner as quantiles generalize the median. Focusing on the asymmetrically weighted variation around an expectile of the data, we find the appropriate projection directions and the low dimensional representation of the traffic flow profiles that uncover different patterns in their extremes. Using the traffic flow data from the roundabout on Ernst-Reuter-Platz in the city center of Berlin, Germany, we estimate, visualize and interpret the resulting principal expectile components. The corresponding directional extremes of the traffic flow profiles are simple to identify and to connect to their location- and time-related specifics. Their shapes are driven by their scores on each principal expectile component which is useful for extracting and analyzing traffic patterns. Our approach to dimensionality reduction towards the directional extremes of traffic flow extends the related methodological basis and gives promising results for subsequent analysis, prediction and control of traffic flow patterns.