论文标题

学习所有可靠的贝叶斯网络结构用于平均模型

Learning All Credible Bayesian Network Structures for Model Averaging

论文作者

Liao, Zhenyu A., Sharma, Charupriya, Cussens, James, van Beek, Peter

论文摘要

贝叶斯网络是一种广泛使用的概率图形模型,该模型具有知识发现和预测中的应用。从数据中学习贝叶斯网络(BN)可以使用众所周知的分数和搜索方法作为优化问题。但是,选择单个模型(即最佳得分bn)可能会产生误导,也可能无法达到最佳准确性。替代单个模型的一种替代方法是执行某种形式的贝叶斯或频繁模型平均,在这种模型中,可能以某种方式对可能的BNS的空间进行采样或枚举。不幸的是,现有的模型平均方法严重限制了贝叶斯网络的结构,或者仅显示出扩展到少于30个随机变量的网络。在本文中,我们提出了一种新颖的方法,以模拟受近似算法的性能保证启发的平均方法。我们的方法具有两个主要优势。首先,我们的方法仅考虑可靠的模型,因为它们在得分上是最佳或近乎最佳的。其次,我们的方法比现有方法更有效,并且比现有方法更有效率,并且可以比较明显更大的贝叶斯网络。

A Bayesian network is a widely used probabilistic graphical model with applications in knowledge discovery and prediction. Learning a Bayesian network (BN) from data can be cast as an optimization problem using the well-known score-and-search approach. However, selecting a single model (i.e., the best scoring BN) can be misleading or may not achieve the best possible accuracy. An alternative to committing to a single model is to perform some form of Bayesian or frequentist model averaging, where the space of possible BNs is sampled or enumerated in some fashion. Unfortunately, existing approaches for model averaging either severely restrict the structure of the Bayesian network or have only been shown to scale to networks with fewer than 30 random variables. In this paper, we propose a novel approach to model averaging inspired by performance guarantees in approximation algorithms. Our approach has two primary advantages. First, our approach only considers credible models in that they are optimal or near-optimal in score. Second, our approach is more efficient and scales to significantly larger Bayesian networks than existing approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源