论文标题
Kähler-Einstein指标和Ding在$ \ Mathbb Q $ -Fano Group compactification上的功能
Kähler-Einstein metrics and Ding functional on $\mathbb Q$-Fano group compactifications
论文作者
论文摘要
让$ g $成为一个复杂的,连接的还原谎言组,这是紧凑型谎言组$ k $的复合。令$ m $为$ \ mathbb q $ -fano $ g $ -compactification。在本文中,我们首先证明了$ k \ times k $ invariant(单数)kähler-ineinstein公制的独特性。然后,我们表明(单数)Kähler-Einstein度量的存在意味着降低功能的正常。最后,我们表明,重中心条件也是适当性的必要条件。
Let $G$ be a complex, connect reductive Lie group which is the complexification of a compact Lie group $K$. Let $M$ be a $\mathbb Q$-Fano $G$-compactification. In this paper, we first prove the uniqueness of $K\times K$-invariant (singular) Kähler-Einstein metric. Then we show the existence of (singular) Kähler-Einstein metric implies properness of the reduced Ding functional. Finally, we show that the barycenter condition is also necessary of properness.