论文标题

还原群的球面典范

Spherical birational sheets in reductive groups

论文作者

Ambrosio, Filippo, Costantini, Mauro

论文摘要

我们将球形杂志纸分类为一个复杂的简单简单连接的代数组。我们使用分类表明,当$ g $是一个连接的还原复杂的代数群时,具有简单连接的派生子组,两个共轭类$ \ Mathcal {o} _1 $,$ \ nathcal {o} _2 $ g $ $ g $的$ g $在同一birational exprient to $ g中,以及仅由$ g的转移,以及仅在$ g中,仅在$ g中。 $ \ MATHCAL {O} _1 $和$ \ MATHCAL {O} _2 $是同构为$ G $ -MODULES。结果,我们证明了$ g $的Lie代数的球形子变量的猜想。

We classify the spherical birational sheets in a complex simple simply-connected algebraic group. We use the classification to show that, when $G$ is a connected reductive complex algebraic group with simply-connected derived subgroup, two conjugacy classes $\mathcal{O}_1$, $\mathcal{O}_2$ of $G$ lie in the same birational sheet, up to a shift by a central element of $G$, if and only if the coordinate rings of $\mathcal{O}_1$ and $\mathcal{O}_2$ are isomorphic as $G$-modules. As a consequence, we prove a conjecture of Losev for the spherical subvariety of the Lie algebra of $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源