论文标题

矢量束的古典泊松代数:谎言代数表征

Classical Poisson algebra of a vector bundle : Lie-algebraic characterization

论文作者

Lecomte, P. B. A, Mushengezi, Elie Zihindula

论文摘要

我们证明,线性操作员的符号的lie代数$ \ MATHCAL {s}(\ MATHCAL {p}(e,m))$,在矢量束$ e \ to m,$ $,$的表征。为了获得这一点,我们假设$ \ Mathcal {s}(\ Mathcal {p}(e,m))$被视为$ {\ rm c}^\ infty(m) - $模块,矢量捆绑包为$ n>1。一阶线性操作员的符号。我们获得了用$ \ MATHCAL {s}^1(\ MATHCAL {P}(E,M))$的向量捆绑包的谎言代数表征,而没有被视为$ {\ rm c}^\ infty(m) - $模块的假设。

We prove that the Lie algebra $\mathcal{S}(\mathcal{P}(E,M))$ of symbols of linear operators acting on smooth sections of a vector bundle $E\to M,$ characterizes it. To obtain this, we assume that $\mathcal{S}(\mathcal{P}(E,M))$ is seen as ${\rm C}^\infty(M)-$module and that the vector bundle is of rank $n>1.$ We improve this result for the Lie algebra $\mathcal{S}^1(\mathcal{P}(E,M))$ of symbols of first-order linear operators. We obtain a Lie algebraic characterization of vector bundles with $\mathcal{S}^1(\mathcal{P}(E,M))$ without the hypothesis of being seen as a ${\rm C}^\infty(M)-$module.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源