论文标题

易于平面的Chern-simons二维抗fiferromagnets中的批判性和琼脂化二元性

Deconfined criticality and bosonization duality in easy-plane Chern-Simons two-dimensional antiferromagnets

论文作者

Shyta, Vira, Brink, Jeroen van den, Nogueira, Flavio S.

论文摘要

具有竞争订单的二维量子系统可以具有脱合量的量子临界点,从而产生连续的相变,与Landau-Ginzburg-Wilson场景不相容,而相反,可以预测一阶相变。这是由LGW顺序参数分解为临界点的新基本激发的原因。典型的量子临界值的规范候选是带有竞争磁性订单的量子反铁磁铁,由Easy-Plane CP $^1 $模型捕获。然而,一个微妙的问题是,数字表示展示一阶过渡的易于平面CP $^1 $ antyromagnet。在这里,我们表明,动作中的其他拓扑Chern-Simons术语以几种方式完全改变了这张图片。我们发现,拓扑平面抗铁磁铁经历了二阶过渡,并具有量化的关键指数。此外,粒子涡流二元性自然地将Chern-simons易于面抗fiferromagnet的分区函数映射到一个无质量的dirac费米子中。

Two-dimensional quantum systems with competing orders can feature a deconfined quantum critical point, yielding a continuous phase transition that is incompatible with the Landau-Ginzburg-Wilson scenario, predicting instead a first-order phase transition. This is caused by the LGW order parameter breaking up into new elementary excitations at the critical point. Canonical candidates for deconfined quantum criticality are quantum antiferromagnets with competing magnetic orders, captured by the easy-plane CP$^1$ model. A delicate issue however is that numerics indicates the easy-plane CP$^1$ antiferromagnet to exhibit a first-order transition. Here we show that an additional topological Chern-Simons term in the action changes this picture completely in several ways. We find that the topological easy-plane antiferromagnet undergoes a second-order transition with quantized critical exponents. Further, a particle-vortex duality naturally maps the partition function of the Chern-Simons easy-plane antiferromagnet into one of massless Dirac fermions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源