论文标题
非定向表面的角色品种的电子系列
E-series of character varieties of non-orientable surfaces
论文作者
论文摘要
在本文中,我们对与紧凑的不可定向表面相关的两种(二叠体)字符品种感兴趣。 (a)我们考虑了该表面基本组的表示空间的商堆栈与GL(n)。 (b)我们在表面上选择了一组K-函数,并选择了GL(N)的半神经共轭性共轭性的通用k核,我们考虑了表面的方向盖上的一堆反不动不及的局部系统,并在当地单调的范围内,由规定的共轭类给出。我们计算了这些空间的点数,从有限磁场上获得了它们的电子系列公式(混合庞加莱系列的一定专业化)。在(b)的情况下,我们讨论当表面是真实的投射平面而k = 1时的混合庞加莱系列。
In this paper we are interested in two kinds of (stacky) character varieties associated to a compact non-orientable surface. (A) We consider the quotient stack of the space of representations of the fundamental group of this surface to GL(n). (B) We choose a set of k-punctures on the surface and a generic k-tuple of semisimple conjugacy classes of GL(n), and we consider the stack of anti-invariant local systems on the orientation cover of the surface with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their E-series (a certain specialization of the mixed Poincaré series). In case (B), we discuss the mixed Poincaré series when the surface is the real projective plane and k=1.