论文标题

通过$ 2 $确定的算术算术

Arithmetic of Some Sequences Via $2$-determinants

论文作者

Bogdanic, Dusko, Janjic, Milan

论文摘要

我们扩展了对$ 2 $确定的人的调查,这是我们在上一篇论文中定义的。对于第二阶的线性同质复发,我们考虑了满足第二阶线性同质复发的不同序列之间的关系。在证明了D'Ocagne的广义认同之后,我们从单个身份中得出了许多经典身份(及其概括),例如D'Ocagne's,Cassini's,Catalan's和Vajda。一路上,我们研究的序列指定了对有限字母的限制单词的相应组合解释。

We extend our investigation of $2$-determinants, which we defined in a previous paper. For a linear homogenous recurrence of the second order, we consider relations between different sequences satisfying the same linear homogeneous recurrence of the second order. After we prove a generalized identity of d'Ocagne, we derive, from a single identity, a number of classical identities (and their generalizations) such as d'Ocagne's, Cassini's, Catalan's and Vajda's. Along the way, the corresponding combinatorial interpretations in terms of restricted words over a finite alphabet are stated for the sequences we investigate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源