论文标题

liouville型定理和非均匀抛物线系统的定期解决方案

Liouville type theorems and periodic solutions for the nonhomogeneous parabolic systems

论文作者

Jevnikar, Aleks, Wang, Jun, Yang, Wen

论文摘要

在本文中,我们得出了liouville的结果,并存在具有非均匀非均质性非均质性的$χ^{(2)} $ type系统的定期解决方案。此外,我们证明了这类问题的通用界限,奇异性和衰减估计。在这项研究中,由于非殖民地非线性,我们必须面临新的困难。为了克服这个问题,我们对此类的非线性进行了微妙的积分估计,并修改了通常的缩放和爆炸论点。这似乎是具有非同质性非线性的抛物线系统的第一个结果。

In the present paper we derive Liouville type results and existence of periodic solutions for $χ^{(2)}$ type systems with non-homogeneous nonlinearities. Moreover, we prove both universal bounds as well as singularity and decay estimates for this class of problems. In this study, we have to face new difficulties due to the non-homogenous nonlinearities. To overcome this issue, we carry out delicate integral estimates for this class of nonlinearities and modify the usual scaling and blow up arguments. This seems to be the first result for parabolic systems with non-homogeneous nonlinearities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源