论文标题

高斯准最大最大可能性方法的性能分析用于独立矢量分析

Performance Analysis of the Gaussian Quasi-Maximum Likelihood Approach for Independent Vector Analysis

论文作者

Weiss, Amir, Cheema, Sher Ali, Haardt, Martin, Yeredor, Arie

论文摘要

最大似然(ML)估计需要精确了解基本统计模型。在准ML(QML)中,推测的模型被用作(未知)真实模型的替代品。在独立矢量分析(IVA)的背景下,我们考虑了对矩阵的混合矩阵集合的高斯QML估计值(QMLE),并对其渐近分离性能进行了(近似)分析。在高斯QML中,这些资料被认为是高斯人,其中一些“受过教育的猜测”指定的协方差矩阵。固定矩阵的产生的准样式方程采用了一种特殊的形式,最近称为扩展的“依次钻孔”关节一致性(Sedjoco)转换,这让人联想到(尽管基本上不同于经典的联合对角线化)。我们表明,无论源的真实分布和/或协方差矩阵如何,渐近的QMLE,即,所得扩展的Sedjoco转化的解决方案都可以达到完美的分离(在某些温和条件下)。此外,基于“小错误”假设,我们提出了扩展Sedjoco溶液的一阶扰动分析。使用溶液矩阵中的误差所得的闭合形式表达式,我们为IVA的所得干扰源比(ISRS)提供了封闭形式的表达式。此外,我们证明ISRS仅取决于来源的协方差,而不取决于其特定分布。作为此结果的直接结果,我们在结果ISRS上提供了渐近可实现的下限。我们还提出了有关两个可能的模型误差的模拟实验的经验结果,以证实了我们的分析推导 - 不准确的协方差矩阵和源的分布不构架。

Maximum Likelihood (ML) estimation requires precise knowledge of the underlying statistical model. In Quasi ML (QML), a presumed model is used as a substitute to the (unknown) true model. In the context of Independent Vector Analysis (IVA), we consider the Gaussian QML Estimate (QMLE) of the demixing matrices set and present an (approximate) analysis of its asymptotic separation performance. In Gaussian QML the sources are presumed to be Gaussian, with covariance matrices specified by some "educated guess". The resulting quasi-likelihood equations of the demixing matrices take a special form, recently termed an extended "Sequentially Drilled" Joint Congruence (SeDJoCo) transformation, which is reminiscent of (though essentially different from) classical joint diagonalization. We show that asymptotically this QMLE, i.e., the solution of the resulting extended SeDJoCo transformation, attains perfect separation (under some mild conditions) regardless of the sources' true distributions and/or covariance matrices. In addition, based on the "small-errors" assumption, we present a first-order perturbation analysis of the extended SeDJoCo solution. Using the resulting closed-form expressions for the errors in the solution matrices, we provide closed-form expressions for the resulting Interference-to-Source Ratios (ISRs) for IVA. Moreover, we prove that asymptotically the ISRs depend only on the sources' covariances, and not on their specific distributions. As an immediate consequence of this result, we provide an asymptotically attainable lower bound on the resulting ISRs. We also present empirical results, corroborating our analytical derivations, of three simulation experiments concerning two possible model errors - inaccurate covariance matrices and sources' distribution mismodeling.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源