论文标题

Kaneko之间的显式关系 - Yamamoto类型多个Zeta值和相关变体

Explicit Relations between Kaneko--Yamamoto Type Multiple Zeta Values and Related Variants

论文作者

Xu, Ce, Zhao, Jianqiang

论文摘要

在本文中,我们首先建立了几个不可或缺的身份。这些积分的形式为\ [\ int_0^1 x^{an+b} f(x)\,dx \ quad(a \ in \ in \ {1,2 \},\ b \ in \ in \ in \ in \ { - 1,-2,-2 \})$ f(x)$是$ f(x)$是单个多个poligh poligh poligh unigh unighm $ $ $ $或kaneko--tsumura a功能(这是二级的单个多元多组载体函数)。我们发现这些积分可以用多个Zeta(Star)值及其相关变体表示(多个$ t $值,多个$ t $ - 值,多个$ s $ values等)和多个谐波(star)和其相关变体(多个$ t $ harmonic sums,多个$ s $ -sharmonic sums等)。使用这些积分身份,我们证明了kaneko的许多明确评估 - 育采对多个Zeta值及其相关变体。此外,我们得出了一些涉及多个Zeta(Star)值及其相关变体的关系。

In this paper we first establish several integral identities. These integrals are of the form \[\int_0^1 x^{an+b} f(x)\,dx\quad (a\in\{1,2\},\ b\in\{-1,-2\})\] where $f(x)$ is a single-variable multiple polylogarithm function or $r$-variable multiple polylogarithm function or Kaneko--Tsumura A-function (this is a single-variable multiple polylogarithm function of level two). We find that these integrals can be expressed in terms of multiple zeta (star) values and their related variants (multiple $t$-values, multiple $T$-values, multiple $S$-values etc.), and multiple harmonic (star) sums and their related variants (multiple $T$-harmonic sums, multiple $S$-harmonic sums etc.). Using these integral identities, we prove many explicit evaluations of Kaneko--Yamamoto multiple zeta values and their related variants. Further, we derive some relations involving multiple zeta (star) values and their related variants.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源