论文标题

HADAMARD国家关于全球双曲机空间的验量量子场理论

Hadamard states for bosonic quantum field theory on globally hyperbolic spacetimes

论文作者

Lewandowski, Max

论文摘要

根据Radzikowski的著名结果,在全球双曲线时空上的浪潮操作员是Hadamard形式的,如果它们是通过杰出参数的线性组合给出的,$ \ frac {i} {i} {2} {2} {2} {\ big big(\ wideteDe在Duistermaat -Hörmander的意义上,\ widetilde {g} _a- \ widetilde {g} _r \ big)$。灵感来自相应的高级和智障绿色操作员$ g_a,g_r $,bär,ginoux,ginoux,pfäffle2007,我们构建了剩下的两个绿色操作员$ g_f,g_f,g_ {af {af} $在哈达玛德系列方面。之后,我们提供了$ \ frac {i} {2} \ big(\ widetilde {g} _ {af} - \ widetilde {g} _ {f} \ big)$的全球构造,该$依赖于新技术,这些技术依赖于诸如papped cauchy问题的新技术,并使用了biSecting to new to bisogy and packing and packing and packing croment。这导致了Hadamard形式的全局两种形式,可以选择每种形式为Hadamard两点功能,即可以对光滑的部分进行调整,以使对称性和阳性条件完全满足。

According to Radzikowski's celebrated results, bisolutions of a wave operator on a globally hyperbolic spacetime are of Hadamard form iff they are given by a linear combination of distinguished parametrices $\frac{i}{2}\big(\widetilde{G}_{aF} - \widetilde{G}_{F} + \widetilde{G}_A - \widetilde{G}_R\big)$ in the sense of Duistermaat-Hörmander. Inspired by the construction of the corresponding advanced and retarded Green operator $G_A,G_R$ as done in Bär, Ginoux, Pfäffle 2007, we construct the remaining two Green operators $G_F, G_{aF}$ locally in terms of Hadamard series. Afterwards, we provide the global construction of $\frac{i}{2}\big(\widetilde{G}_{aF} - \widetilde{G}_{F}\big)$, which relies on new techniques like a well-posed Cauchy problem for bisolutions and a patching argument using Čech cohomology. This leads to global bisolutions of Hadamard form, each of which can be chosen to be a Hadamard two-point-function, i.e. the smooth part can be adapted such that, additionally, the symmetry and the positivity condition are exactly satisfied.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源