论文标题

诊断测试的葡萄干拷贝

The Dinegentropy of Diagnostic Tests

论文作者

Singpurwalla, Nozer D., Lai, Boya

论文摘要

诊断测试是对医学,大流行跟踪,威胁检测和信号处理的各种情况的隐密性。这是一张带有一些原始结果的说明性纸。在这里,我们首先设置了用于诊断的数学体系结构,并探索其概率的基础。这样做使我们能够开发新的指标来评估不同类型的诊断测试的功效,并解决诊断中长期存在的开放问题,即,在其接收器操作特征曲线交叉时进行比较测试。第一个是通过引入我们所谓的Gini系数的概念来完成的;第二个通过调用葡萄糖拷贝的信息理论概念。综上所述,可以看出这些对诊断艺术状态的贡献。我们作品的精神也可能与讨论的批次测试主题有关,在该主题中,每个批次都由用于创建它的分区策略来定义。但是,此处尚未详细探讨这种可能性。相反,我们邀请其他研究人员的注意来调查这一想法,因为未来的工作。

Diagnostic testing is germane to a variety of scenarios in medicine, pandemic tracking, threat detection, and signal processing. This is an expository paper with some original results. Here we first set up a mathematical architecture for diagnostics, and explore its probabilistic underpinnings. Doing so enables us to develop new metrics for assessing the efficacy of different kinds of diagnostic tests, and for solving a long standing open problem in diagnostics, namely, comparing tests when their receiver operating characteristic curves cross. The first is done by introducing the notion of what we call, a Gini Coefficient; the second by invoking the information theoretic notion of dinegentropy. Taken together, these may be seen a contribution to the state of the art of diagnostics. The spirit of our work could also be relevant to the much discussed topic of batch testing, where each batch is defined by the partitioning strategy used to create it. However this possibility has not been explored here in any detail. Rather, we invite the attention of other researchers to investigate this idea, as future work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源