论文标题

手性二重性研究在1+1个维度中

Duality study of chiral Heisenberg Gross-Neveu model in 1+1 dimensions

论文作者

Thies, Michael

论文摘要

我们考虑使用离散手性和连续的风味对称性(Isospin)的1+1维中的总螺旋模型的版本。在2+1个维度中,该模型被称为手性海森贝格(Heisenberg Gross-Neveu)模型。显示了自发的对称性破裂以及两个无质量和一个巨大的标量玻色子的出现。只要将等异,拟杆伪均值场限制在同胞素空间中的平面上,就展示了与Isospin的Nambu-Jona-Lasinio模型的双重性。这使我们能够找到相位图作为温度,化学势和同源化学势以及扭曲的扭结的函数的函数。与毛类模型的其他手性变体相比,添加到该模型中时,裸露的质量项的作用大不相同。

We consider a version of the Gross-Neveu model in 1+1 dimensions with discrete chiral and continuous flavor symmetry (isospin). In 2+1 dimensions, this model is known as chiral Heisenberg Gross-Neveu model. Spontaneous symmetry breaking and the emergence of two massless and one massive scalar bosons are shown. A duality to the Nambu--Jona-Lasinio model with isospin is exhibited, provided that the isovector pseudoscalar mean field is constrained to a plane in isospin space. This enables us to find the phase diagram as a function of temperature, chemical potential and isospin chemical potential as well as twisted kinks. A bare mass term acts quite differently when added to this model as compared to other chiral variants of the Gross-Neveu model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源