论文标题
左LCM半群的动力学系统的部分异端跨产品
Partial-isometric crossed products of dynamical systems by left LCM semigroups
论文作者
论文摘要
让P为左LCM半群,而$α$由$ c^{*} $ - 代数$ a $的$ p $ $ p $。我们研究了半群杂交产品$ c^{*} $ - 代数,其中$α$由部分异构体实施。该交叉产物为Hilbert Bimodules产品系统的NICA-Teoplitz代数(与Fowler首先研究的Hilbert Bimodules的nica-Teoplitz代数)提供了模型,我们为其提供了一个结构定理,因为它在简短的精确序列和张量产品下的表现很好。
Let P be a left LCM semigroup, and $α$ an action of $P$ by endomorphisms of a $C^{*}$-algebra $A$. We study a semigroup crossed product $C^{*}$-algebra in which the action $α$ is implemented by partial isometries. This crossed product gives a model for the Nica-Teoplitz algebras of product systems of Hilbert bimodules (associated with semigroup dynamical systems) studied first by Fowler, for which we provide a structure theorem as it behaves well under short exact sequences and tensor products.