论文标题
耀斑奎特与耀斑活动区域的光电磁参数的时间序列分析:波动的缩放特性
Time Series Analysis of Photospheric Magnetic Parameters of Flare-quiet versus Flaring Active Regions: Scaling Properties of Fluctuations
论文作者
论文摘要
太阳活动区域(ARS)的光球磁参数的时间序列用于回答该时间序列中嵌入的波动的缩放特性是否有助于区分耀斑Quiet和Flaring AR。我们总共检查了118个耀斑Quiet和118个耀斑的AR斑(称为HARP),在2010年至2016年间,太阳能动力学天文台(SDO)观察到了2010年至2016年。具体而言,波动的缩放指数是在所有正在研究的HARPs的12分钟Cadence处的8天时间序列的数据集中应用的降解波动分析(DFA)方法的得出的。我们首先发现,耀斑和耀斑竖琴之间的缩放指数的分布有统计学上的显着差异,特别是对于某些与磁场线扭转,电流密度和电流螺旋性相关的空间平均,签名的参数。与耀斑Quiet的竖琴指数相比,弹性竖琴倾向于显示更高的缩放指数值,即使它们的分布之间存在相当大的重叠。此外,对于flare Quiet和Flaring Harps,DFA分析表明,(1)所考虑的大多数各种磁参数的时间序列是非静止的,并且(2)总未签名磁通量的时间序列以及平均光电磁自由能密度的平均磁性自由度密度一般不稳定的磁性且无符号的磁性效果,而无符号的磁性磁性差异和磁性磁性差异均与磁性磁极差异,并且是磁性的磁极差异。其时间序列中的非平稳,反持有趋势。
Time series of photospheric magnetic parameters of solar active regions (ARs) are used to answer whether scaling properties of fluctuations embedded in such time series help to distinguish between flare-quiet and flaring ARs. We examine a total of 118 flare-quiet and 118 flaring AR patches (called HARPs), which were observed from 2010 to 2016 by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Specifically, the scaling exponent of fluctuations is derived applying the Detrended Fluctuation Analysis (DFA) method to a dataset of 8-day time series of 18 photospheric magnetic parameters at 12-min cadence for all HARPs under investigation. We first find a statistically significant difference in the distribution of the scaling exponent between the flare-quiet and flaring HARPs, in particular for some space-averaged, signed parameters associated with magnetic field line twist, electric current density, and current helicity. The flaring HARPs tend to show higher values of the scaling exponent compared to those of the flare-quiet ones, even though there is considerable overlap between their distributions. In addition, for both the flare-quiet and flaring HARPs the DFA analysis indicates that (1) time series of most of various magnetic parameters under consideration are non-stationary, and (2) time series of the total unsigned magnetic flux and the mean photospheric magnetic free energy density in general present a non-stationary, persistent property, while the total unsigned flux near magnetic polarity inversion lines and parameters related to current density show a non-stationary, anti-persistent trend in their time series.