论文标题
深度无弹性涡流散射:正面碰撞的第三个结果
Deep inelastic vortex scattering: A third outcome for head-on collisions
论文作者
论文摘要
结果是根据平面非线性麦克斯韦 - 克莱因·戈登方程的数值模拟显示的,这些方程式显示了一系列Ginzburg-landau(或Abelian-Higgs)参数($κ$)的深度非弹性散射($ M = 1 $涡流),影响参数($ b $),以及初始velocities($ velocities $)($ v_0 $)。通过改变$ v_0 $,探索了右角散射的阈值($ v_0^*$)。解决方案遵守时间缩放法律,$ t \ proptoα\ ln(v_0-v_0^*)$,具有$κ$依赖性的缩放指数,$α$,并且具有$ v_0^*$,似乎没有先前报道的上限。观察到任意长期寿命的静态静态中间吸引子($ v_0 = v_0^*$)是$κ$ - 特定的$ m = 2 $ wortex解决方案。观察到零轴($ b \ neq 0 $)碰撞的散射角度,范围为$ b $,$ v_0 $和$κ$。结果表明,对于任意小的影响参数($ b \ rightarrow 0 $),不稳定的%但任意长寿的$κ$ - 依赖性$ m = 2 $ m = 2 $“ crigith”涡流是一种中间吸引子,并以$κ$ - \ emph {独立}的散射角度衰减$ 135^^{\ composity的散射角度,与$ 135^{ $ 180^{\ circ} $或$ 90^{\ circ} $ for $ b = 0 $。
Results are presented from numerical simulations of the flat-space nonlinear Maxwell-Klein-Gordon equations demonstrating deep inelastic scattering of $m=1$ vortices for a range of Ginzburg-Landau (or Abelian-Higgs) parameters ($κ$), impact parameters ($b$), and initial velocities ($v_0$). The threshold ($v_0^*$) of right-angle scattering is explored for head-on ($b=0$) collisions by varying $v_0$. Solutions obey time-scaling laws, $T\propto α\ln(v_0-v_0^*) $, with $κ$-dependent scaling exponents, $α$, and have $v_0^*$ that appear not to have the previously reported upper bound. The arbitrarily long-lived static intermediate attractor at criticality ($v_0=v_0^*$) is observed to be the $κ$-specific $m=2$ vortex solution. Scattering angles are observed for off-axis ($b\neq 0$) collisions for a wide range of $b$, $v_0$, and $κ$. It is shown that for arbitrarily small impact parameters ($b\rightarrow 0$), the unstable %but arbitrarily long-lived $κ$-dependent $m=2$ "critical" vortex is an intermediate attractor and decays with a $κ$-\emph{independent} scattering angle of $135^{\circ}$, as opposed to either of the well-known values of $180^{\circ}$ or $90^{\circ}$ for $b=0$.