论文标题
跳入全息超导体
Diving into a holographic superconductor
论文作者
论文摘要
反DE保姆空间中充电的黑洞变得不稳定,无法在低温下形成带电的标量头发$ t <t_ \ text {c} $。这种现象是超导性的全息实现。我们看这些全息超导体的地平线内,并找到复杂的动力学行为。时空以空间般的Kasner奇异性结束,并且没有Cauchy Horizon。在达到奇点之前,我们在分析和数字上都有几种中间智慧。其中包括强大的约瑟夫森(Josephson)在冷凝物中的振荡和可能的“ kasner倒置”,其中经过许多E折叠的扩张,爱因斯坦 - 罗森 - 罗森 - 罗森 - 桥梁朝向奇异性。由于约瑟夫森的振荡,Kasner倒置的数量非常敏感地取决于$ t $,并且以$ t_c $积累的一组离散温度差异。在这些$ T_N $附近,最终的Kasner指数表现出类似分形的行为。
Charged black holes in anti-de Sitter space become unstable to forming charged scalar hair at low temperatures $T < T_\text{c}$. This phenomenon is a holographic realization of superconductivity. We look inside the horizon of these holographic superconductors and find intricate dynamical behavior. The spacetime ends at a spacelike Kasner singularity, and there is no Cauchy horizon. Before reaching the singularity, there are several intermediate regimes which we study both analytically and numerically. These include strong Josephson oscillations in the condensate and possible 'Kasner inversions' in which after many e-folds of expansion, the Einstein-Rosen bridge contracts towards the singularity. Due to the Josephson oscillations, the number of Kasner inversions depends very sensitively on $T$, and diverges at a discrete set of temperatures $\{T_n\}$ that accumulate at $T_c$. Near these $T_n$, the final Kasner exponent exhibits fractal-like behavior.