论文标题
量子离域,仪表和量子光学:相对论量子信息中的光 - 含量相互作用
Quantum delocalization, gauge and quantum optics: The light-matter interaction in relativistic quantum information
论文作者
论文摘要
我们重新审视了第一定量原子系统(由两个带电的量子颗粒组成)与量子电磁场的相互作用,指出了与电磁量的规格性质和多极近似的效果有关的微妙性。我们将完整的最小耦合模型与用于量子光学和相对论量子信息的典型有效模型(例如Unruh-Dewitt(UDW)模型)和偶极耦合近似值连接。我们指出的是,不同近似程度的不同程度是合理的,在哪些情况下,需要完善有效的模型以捕获光结合相互作用的特征。当将原子的质量中心(COM)视为可以在多个轨迹上被定位的量子系统时,这一点尤其重要。例如,我们表明,使用量子com的最简单的UDW近似无法捕获至关重要的röntgen项耦合com和内部原子自由度,并且彼此和田地。最后,我们展示了如何将有效的偶极相互作用模型协变为相对移动的原子。
We revisit the interaction of a first-quantized atomic system (consisting of two charged quantum particles) with the quantum electromagnetic field, pointing out the subtleties related to the gauge nature of electromagnetism and the effect of multipole approximations. We connect the full minimal-coupling model with the typical effective models used in quantum optics and relativistic quantum information such as the Unruh-DeWitt (UDW) model and the dipole coupling approximation. We point out in what regimes different degrees of approximation are reasonable and in what cases effective models need to be refined to capture the features of the light-matter interaction. This is particularly important when considering the center of mass (COM) of the atom as a quantum system that can be delocalized over multiple trajectories. For example, we show that the simplest UDW approximation with a quantum COM fails to capture crucial Röntgen terms coupling COM and internal atomic degrees of freedom with each other and the field. Finally we show how effective dipole interaction models can be covariantly prescribed for relativistically moving atoms.