论文标题

全面的时空感染模型

A comprehensive spatial-temporal infection model

论文作者

Ramaswamy, Harisankar, Oberai, Assad A, Yortsos, Yannis C

论文摘要

由人类到人类感染和化学过程的传播之间的类比,我们开发了一个综合模型,既说明感染和运输。在此类比中,感染模型的三个不同种群对应于三种化学物种。面积密度作为关键变量出现,从而捕获了空间密度的效果。我们得出感染率和重要参数R0的动力学的表达式,其中包括面积密度及其空间分布。结合迁移率该模型允许研究各种效果。我们首先提出了批处理反应器的结果,这是SIR模型的化学过程。由于密度使R0成为过程范围的减小功能,因此感染曲线与标准SIR模型不同,并且小。我们表明,初始条件的影响仅限于流行病的开始。我们在许多情况下得出有效的感染曲线,包括低R0环境区域之间的来回通勤。然后,我们考虑空间分布式系统。我们表明,扩散会导致行进波,在1-D几何以恒定速度和恒定形状的传播中,这两个几何均具有R0的唯一函数。感染曲线与批处理问题略有不同,因为扩散会减轻感染强度,从而导致有效的较低R0。发现尺寸波速度与R0的扩散率和增加功能的平方根的乘积成正比,这证实了限制迁移率在阻止感染传播中的重要性。我们检查了在各种条件和场景下感染波的相互作用,并将波传播分析扩展到二维异质系统。

Motivated by analogies between the spreading of human-to-human infections and of chemical processes, we develop a comprehensive model that accounts both for infection and for transport. In this analogy, the three different populations of infection models correspond to three chemical species. Areal densities emerge as the key variables, thus capturing the effect of spatial density. We derive expressions for the kinetics of the infection rates and for the important parameter R0, that include areal density and its spatial distribution. Coupled with mobility the model allows the study of various effects. We first present results for a batch reactor, the chemical process equivalent of the SIR model. Because density makes R0 a decreasing function of the process extent, the infection curves are different and smaller than for the standard SIR model. We show that the effect of the initial conditions is limited to the onset of the epidemic. We derive effective infection curves for a number of cases, including a back-and-forth commute between regions of low and high R0 environments. We then consider spatially distributed systems. We show that diffusion leads to traveling waves, which in 1-D geometries propagate at a constant speed and with a constant shape, both of which are sole functions of R0. The infection curves are slightly different than for the batch problem, as diffusion mitigates the infection intensity, thus leading to an effective lower R0. The dimensional wave speed is found to be proportional to the product of the square root of the diffusivity and of an increasing function of R0, confirming the importance of restricting mobility in arresting the propagation of infection. We examine the interaction of infection waves under various conditions and scenarios, and extend the wave propagation analysis to 2-D heterogeneous systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源