论文标题

关于$ \ Mathcal {b}({\ Mathcal {h}}})$的新规范及其在数值半径不平等的应用程序

On a new norm on $\mathcal{B}({\mathcal{H}})$ and its applications to numerical radius inequalities

论文作者

Sain, D., Bhunia, P., Bhanja, A., Paul, K.

论文摘要

我们在复杂的希尔伯特空间上介绍了有界线性操作员空间的新规范,该空间概括了数值半径标准,通常的操作员规范和经过修改的Davis-Wielandt Radius。我们研究该规范的基本特性,包括上限和下限。作为本研究的应用,我们估计有界线性算子的数值半径的界限。我们用例子说明了我们的结果改善了一些现有的数值不平等现象。

We introduce a new norm on the space of bounded linear operators on a complex Hilbert space, which generalizes the numerical radius norm, the usual operator norm and the modified Davis-Wielandt radius. We study basic properties of this norm, including the upper and the lower bounds for it. As an application of the present study, we estimate bounds for the numerical radius of bounded linear operators. We illustrate with examples that our results improve on some of the important existing numerical radius inequalities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源