论文标题

对加密数据的数据驱动控制

Data-driven control on encrypted data

论文作者

Alexandru, Andreea B., Tsiamis, Anastasios, Pappas, George J.

论文摘要

我们为加密感知数据驱动的控制问题提供了有效而私人的解决方案。我们将控件作为服务方案进行调查,客户端使用服务提供商的专门外包控制解决方案。客户端系统的隐私敏感模型参数是不可用的或可变的。因此,我们要求服务提供商在客户端的输入输出数据示例上以隐私性的方式执行数据驱动的控制。为此,我们在控制性能和隐私规范方面共同设计了控制方案。首先,我们根据行为框架的最新结果来制定控制算法,并证明了经典配方与我们的配方之间的亲密关系,这些表述说明了加密引起的噪声和精确误差。其次,我们使用最先进的同质加密方案来使服务提供商能够对客户的加密数据执行高复杂性计算,从而确保隐私。最后,我们通过利用丰富的数据结构并精心采用密文批处理和重新安排操作来简化解决方案,以实现并行化。与我们先前的工作相比,该解决方案实现了两倍以上的运行时和内存改进。

We provide an efficient and private solution to the problem of encryption-aware data-driven control. We investigate a Control as a Service scenario, where a client employs a specialized outsourced control solution from a service provider. The privacy-sensitive model parameters of the client's system are either not available or variable. Hence, we require the service provider to perform data-driven control in a privacy-preserving manner on the input-output data samples from the client. To this end, we co-design the control scheme with respect to both control performance and privacy specifications. First, we formulate our control algorithm based on recent results from the behavioral framework, and we prove closeness between the classical formulation and our formulation that accounts for noise and precision errors arising from encryption. Second, we use a state-of-the-art leveled homomorphic encryption scheme to enable the service provider to perform high complexity computations on the client's encrypted data, ensuring privacy. Finally, we streamline our solution by exploiting the rich structure of data, and meticulously employing ciphertext batching and rearranging operations to enable parallelization. This solution achieves more than twofold runtime and memory improvements compared to our prior work.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源