论文标题

3D重建的次数视图策略

Next-Best View Policy for 3D Reconstruction

论文作者

Peralta, Daryl, Casimiro, Joel, Nilles, Aldrin Michael, Aguilar, Justine Aletta, Atienza, Rowel, Cajote, Rhandley

论文摘要

手动选择观点或使用常用的飞行计划者(例如使用无人机进行大规模3D重建的圆形路径)通常会导致3D模型不完整。最近的作品依靠手工设计的启发式方法,例如信息增益来选择次要的观点。在这项工作中,我们提出了一种基于学习的算法,称为scan-rl,以学习下一步的视图(NBV)策略。为了培训和评估代理商,我们创建了Houses3K,这是3D房屋型号的数据集。我们的实验表明,与基线圆形路径相比,使用SCAN-RL可以使用较少的步骤和较短的距离扫描房屋。实验结果还表明,单个NBV策略可用于扫描多个房屋,包括训练期间未见的房屋。可以在https://github.com/darylperalta/scanrl上获得scan-rl的链接,并且可以在https://github.com/darylperalta/houses3k上找到Houses3k数据集。

Manually selecting viewpoints or using commonly available flight planners like circular path for large-scale 3D reconstruction using drones often results in incomplete 3D models. Recent works have relied on hand-engineered heuristics such as information gain to select the Next-Best Views. In this work, we present a learning-based algorithm called Scan-RL to learn a Next-Best View (NBV) Policy. To train and evaluate the agent, we created Houses3K, a dataset of 3D house models. Our experiments show that using Scan-RL, the agent can scan houses with fewer number of steps and a shorter distance compared to our baseline circular path. Experimental results also demonstrate that a single NBV policy can be used to scan multiple houses including those that were not seen during training. The link to Scan-RL is available at https://github.com/darylperalta/ScanRL and Houses3K dataset can be found at https://github.com/darylperalta/Houses3K.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源