论文标题

使用量子机学习技术构建面部识别系统

Towards Building A Facial Identification System Using Quantum Machine Learning Techniques

论文作者

Easom-McCaldin, Philip, Bouridane, Ahmed, Belatreche, Ammar, Jiang, Richard

论文摘要

在现代世界中,面部识别是一项极为重要的任务,其中许多应用程序依赖高性能算法来有效地检测面部。 SVM和K-NN的经典方法通常可以按照良好的标准执行,但它们通常是高度复杂的,并且具有实质性的计算能力来有效运行。随着量子计算的兴起,不牺牲大量急需的性能,旨在探索量子机器学习技术在专门针对面部识别应用程序时会带来的好处。在以下工作中,我们探索了一种量子方案,该方案使用特征向量的保真度估计,以确定分类结果。在这里,我们能够通过利用量子计算的原理来实现指数加速,而无需在分类精度方面牺牲大量的性能。我们还提出了工作的局限性,以及应采取一些未来的努力,以产生可靠的量子算法,这些算法可以在使用加速性能提升的同时以与经典方法相同的标准执行。

In the modern world, facial identification is an extremely important task in which many applications rely on high performing algorithms to detect faces efficiently. Whilst classical methods of SVM and k-NN commonly used may perform to a good standard, they are often highly complex and take substantial computing power to run effectively. With the rise of quantum computing boasting large speedups without sacrificing large amounts of much needed performance, we aim to explore the benefits that quantum machine learning techniques can bring when specifically targeted towards facial identification applications. In the following work, we explore a quantum scheme which uses fidelity estimations of feature vectors in order to determine the classification result. Here, we are able to achieve exponential speedups by utilizing the principles of quantum computing without sacrificing large proportions of performance in terms of classification accuracy. We also propose limitations of the work and where some future efforts should be placed in order to produce robust quantum algorithms that can perform to the same standard as classical methods whilst utilizing the speedup performance gains.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源