论文标题

一种现实的鱼类汉近坦数据集,用于评估用于水下视觉分析的算法

A Realistic Fish-Habitat Dataset to Evaluate Algorithms for Underwater Visual Analysis

论文作者

Saleh, Alzayat, Laradji, Issam H., Konovalov, Dmitry A., Bradley, Michael, Vazquez, David, Sheaves, Marcus

论文摘要

对复杂鱼类栖息地的视觉分析是迈向可持续渔业的人类消费和环境保护的重要一步。深度学习方法在大规模数据集中接受培训时,对场景分析显示了巨大的希望。但是,当前用于鱼类分析的数据集倾向于集中在受约束的普通环境中的分类任务上,这些任务不会捕捉水下鱼类栖息地的复杂性。为了解决这一限制,我们将DeepFish作为基准套件提供,其中包含一个大规模数据集,以训练和测试几个计算机视觉任务。该数据集由来自热带澳大利亚的海洋环境中的20 \绿色{栖息地从水下收集的大约40,000张图像组成。该数据集最初仅包含分类标签。因此,我们收集了点级和分割标签以具有更全面的鱼类分析基准。这些标签使模型能够学会自动监测鱼类数,识别其位置并估算其大小。我们的实验提供了对数据集特性的深入分析,以及基于我们的基准测试的几种最先进方法的性能评估。尽管在Imagenet上预先训练的模型已在此基准测试上成功执行,但仍有改进的余地。因此,该基准是在水下计算机视觉挑战的领域中激励进一步发展的测试。代码可用:https://github.com/alzayats/deepfish

Visual analysis of complex fish habitats is an important step towards sustainable fisheries for human consumption and environmental protection. Deep Learning methods have shown great promise for scene analysis when trained on large-scale datasets. However, current datasets for fish analysis tend to focus on the classification task within constrained, plain environments which do not capture the complexity of underwater fish habitats. To address this limitation, we present DeepFish as a benchmark suite with a large-scale dataset to train and test methods for several computer vision tasks. The dataset consists of approximately 40 thousand images collected underwater from 20 \green{habitats in the} marine-environments of tropical Australia. The dataset originally contained only classification labels. Thus, we collected point-level and segmentation labels to have a more comprehensive fish analysis benchmark. These labels enable models to learn to automatically monitor fish count, identify their locations, and estimate their sizes. Our experiments provide an in-depth analysis of the dataset characteristics, and the performance evaluation of several state-of-the-art approaches based on our benchmark. Although models pre-trained on ImageNet have successfully performed on this benchmark, there is still room for improvement. Therefore, this benchmark serves as a testbed to motivate further development in this challenging domain of underwater computer vision. Code is available at: https://github.com/alzayats/DeepFish

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源