论文标题
关于统治和独立性的新界限
New bounds on domination and independence in graphs
论文作者
论文摘要
我们在统治数和图的独立性上提出了新的界限,并表明我们的界限与最近的界限相比有利。我们的边界是通过使用链接差异,期望值,最小值和最大随机变量具有界分布的差异的不等式来获得的。
We propose new bounds on the domination number and on the independence number of a graph and show that our bounds compare favorably to recent ones. Our bounds are obtained by using the Bhatia-Davis inequality linking the variance, the expected value, the minimum, and the maximum of a random variable with bounded distribution.