论文标题
跳跃数量的集群点曲面plurisubharmonic功能
Cluster points of jumping numbers of toric plurisubharmonic functions
论文作者
论文摘要
我们表明,每一个$ n \ ge 1 $对于$ \ mathbf {c}^n $中的复曲面plurisubharmonic函数的跳跃数量的集群点集。我们还提供了这些集群点集的精确表征。这些将D. Kim和H. Seo的最新结果从$ n = 2 $到任意维度。我们的方法是分析牛顿凸体的渐近行为,与复曲面plurisubharmonic功能相关。
We show that the set of cluster points of jumping numbers of a toric plurisubharmonic function in $\mathbf{C}^n$ is discrete for every $n \ge 1$. We also give a precise characterization of the set of those cluster points. These generalize a recent result of D. Kim and H. Seo from $n=2$ to arbitrary dimension. Our method is to analyze the asymptotic behaviors of Newton convex bodies associated to toric plurisubharmonic functions.